Internal
problem
ID
[6914]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
7
Problem
number
:
First
order
with
homogeneous
Coefficients.
Exercise
7.10,
page
61
Date
solved
:
Tuesday, September 30, 2025 at 04:05:13 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=2*y(x)*exp(x/y(x))+(y(x)-2*x*exp(x/y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=2*y[x]*Exp[x/y[x]]+(y[x]-2*x*Exp[x/y[x]])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x*exp(x/y(x)) + y(x))*Derivative(y(x), x) + 2*y(x)*exp(x/y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)