Internal
problem
ID
[6925]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
2.
Special
types
of
differential
equations
of
the
first
kind.
Lesson
8
Problem
number
:
Differential
equations
with
Linear
Coefficients.
Exercise
8.6,
page
69
Date
solved
:
Tuesday, September 30, 2025 at 04:06:05 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=x+y(x)+(2*x+2*y(x)-1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x+y[x])+(2*x+2*y[x]-1)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x + (2*x + 2*y(x) - 1)*Derivative(y(x), x) + y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)