26.2.6 problem Differential equations with Linear Coefficients. Exercise 8.6, page 69

Internal problem ID [6925]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 8
Problem number : Differential equations with Linear Coefficients. Exercise 8.6, page 69
Date solved : Tuesday, September 30, 2025 at 04:06:05 PM
CAS classification : [[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} x +y+\left (2 x +2 y-1\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.026 (sec). Leaf size: 21
ode:=x+y(x)+(2*x+2*y(x)-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\operatorname {LambertW}\left (2 \,{\mathrm e}^{-2+x -c_1}\right )}{2}+1-x \]
Mathematica. Time used: 0.06 (sec). Leaf size: 33
ode=(x+y[x])+(2*x+2*y[x]-1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (W\left (-e^{x-1+c_1}\right )-2 x+2\right )\\ y(x)&\to 1-x \end{align*}
Sympy. Time used: 0.570 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x + (2*x + 2*y(x) - 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = - x + \frac {W\left (C_{1} e^{x - 2}\right )}{2} + 1 \]