26.5.12 problem Exercise 11.11, page 97

Internal problem ID [6985]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 11, Bernoulli Equations
Problem number : Exercise 11.11, page 97
Date solved : Tuesday, September 30, 2025 at 04:07:43 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }+2 y&=\sin \left (x \right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 19
ode:=diff(y(x),x)+2*y(x) = sin(x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\cos \left (x \right )}{5}+\frac {2 \sin \left (x \right )}{5}+{\mathrm e}^{-2 x} c_1 \]
Mathematica. Time used: 0.025 (sec). Leaf size: 31
ode=D[y[x],x]+2*y[x]==Sin[x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-2 x} \left (\int _1^xe^{2 K[1]} \sin (K[1])dK[1]+c_1\right ) \end{align*}
Sympy. Time used: 0.075 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*y(x) - sin(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- 2 x} + \frac {2 \sin {\left (x \right )}}{5} - \frac {\cos {\left (x \right )}}{5} \]