26.6.11 problem Exercise 12.11, page 103

Internal problem ID [7011]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 2. Special types of differential equations of the first kind. Lesson 12, Miscellaneous Methods
Problem number : Exercise 12.11, page 103
Date solved : Tuesday, September 30, 2025 at 04:14:19 PM
CAS classification : [[_homogeneous, `class G`], _rational, _Bernoulli]

\begin{align*} x^{2} y+y^{2}+x^{3} y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=x^2*y(x)+y(x)^2+x^3*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {3 x^{2}}{3 c_1 \,x^{3}-1} \]
Mathematica. Time used: 0.089 (sec). Leaf size: 26
ode=(x^2*y[x]+y[x]^2)+x^3*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {3 x^2}{-1+3 c_1 x^3}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.120 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3*Derivative(y(x), x) + x**2*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {3 x^{2}}{C_{1} x^{3} - 1} \]