26.7.1 problem Exercise 20.1, page 220

Internal problem ID [7051]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.1, page 220
Date solved : Tuesday, September 30, 2025 at 04:20:57 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+2 y^{\prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=diff(diff(y(x),x),x)+2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-2 x} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 19
ode=D[y[x],{x,2}]+2*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_2-\frac {1}{2} c_1 e^{-2 x} \end{align*}
Sympy. Time used: 0.079 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 2 x} \]