26.7.15 problem Exercise 20.16, page 220

Internal problem ID [7065]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.16, page 220
Date solved : Tuesday, September 30, 2025 at 04:21:05 PM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-6 y^{\prime \prime }+12 y^{\prime }-8 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=-8*y(x)+12*diff(y(x),x)-6*diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (c_3 \,x^{2}+c_2 x +c_1 \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 23
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+12*D[y[x],x]-8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{2 x} (x (c_3 x+c_2)+c_1) \end{align*}
Sympy. Time used: 0.100 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-8*y(x) + 12*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + x \left (C_{2} + C_{3} x\right )\right ) e^{2 x} \]