Internal
problem
ID
[7065]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
20.
Constant
coefficients
Problem
number
:
Exercise
20.16,
page
220
Date
solved
:
Tuesday, September 30, 2025 at 04:21:05 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
ode:=-8*y(x)+12*diff(y(x),x)-6*diff(diff(y(x),x),x)+diff(diff(diff(y(x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,3}]-6*D[y[x],{x,2}]+12*D[y[x],x]-8*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-8*y(x) + 12*Derivative(y(x), x) - 6*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {} dsolve(ode,func=y(x),ics=ics)