26.7.21 problem Exercise 20.22, page 220

Internal problem ID [7071]
Book : Ordinary Differential Equations, By Tenenbaum and Pollard. Dover, NY 1963
Section : Chapter 4. Higher order linear differential equations. Lesson 20. Constant coefficients
Problem number : Exercise 20.22, page 220
Date solved : Tuesday, September 30, 2025 at 04:21:07 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }-8 y^{\prime \prime }+36 y&=0 \end{align*}
Maple. Time used: 0.008 (sec). Leaf size: 48
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-8*diff(diff(y(x),x),x)+36*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\sqrt {5}\, x} \sin \left (x \right )-c_2 \,{\mathrm e}^{-\sqrt {5}\, x} \sin \left (x \right )+c_3 \,{\mathrm e}^{\sqrt {5}\, x} \cos \left (x \right )+c_4 \,{\mathrm e}^{-\sqrt {5}\, x} \cos \left (x \right ) \]
Mathematica. Time used: 0.005 (sec). Leaf size: 142
ode=D[y[x],{x,4}]-8*D[y[x],{x,2}]+36*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-\sqrt {6} x \cos \left (\frac {1}{2} \arctan \left (\frac {\sqrt {5}}{2}\right )\right )} \left (\left (c_3 e^{2 \sqrt {6} x \cos \left (\frac {1}{2} \arctan \left (\frac {\sqrt {5}}{2}\right )\right )}+c_2\right ) \cos \left (\sqrt {6} x \sin \left (\frac {1}{2} \arctan \left (\frac {\sqrt {5}}{2}\right )\right )\right )+\sin \left (\sqrt {6} x \sin \left (\frac {1}{2} \arctan \left (\frac {\sqrt {5}}{2}\right )\right )\right ) \left (c_1 e^{2 \sqrt {6} x \cos \left (\frac {1}{2} \arctan \left (\frac {\sqrt {5}}{2}\right )\right )}+c_4\right )\right ) \end{align*}
Sympy. Time used: 0.153 (sec). Leaf size: 131
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(36*y(x) - 8*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (\sqrt {6} x \sin {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )} \right )} + C_{2} \cos {\left (\sqrt {6} x \sin {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )} \right )}\right ) e^{- \sqrt {6} x \cos {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )}} + \left (C_{3} \sin {\left (\sqrt {6} x \sin {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )} \right )} + C_{4} \cos {\left (\sqrt {6} x \sin {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )} \right )}\right ) e^{\sqrt {6} x \cos {\left (\frac {\operatorname {atan}{\left (\frac {\sqrt {5}}{2} \right )}}{2} \right )}} \]