Internal
problem
ID
[7074]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
20.
Constant
coefficients
Problem
number
:
Exercise
20.25,
page
220
Date
solved
:
Tuesday, September 30, 2025 at 04:21:09 PM
CAS
classification
:
[[_high_order, _missing_x]]
ode:=6*y(x)+5*diff(diff(y(x),x),x)+diff(diff(diff(diff(y(x),x),x),x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]+5*D[y[x],{x,2}]+6*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*y(x) + 5*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)