Internal
problem
ID
[7084]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
20.
Constant
coefficients
Problem
number
:
Exercise
20,
problem
35,
page
220
Date
solved
:
Tuesday, September 30, 2025 at 04:21:15 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=3*diff(diff(diff(y(x),x),x),x)+5*diff(diff(y(x),x),x)+diff(y(x),x)-y(x) = 0; ic:=[y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=3*D[y[x],{x,3}]+5*D[y[x],{x,2}]+D[y[x],x]-y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-y(x) + Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)) + 3*Derivative(y(x), (x, 3)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1, Subs(Derivative(y(x), (x, 2)), x, 0): -1} dsolve(ode,func=y(x),ics=ics)