Internal
problem
ID
[7092]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
4.
Higher
order
linear
differential
equations.
Lesson
21.
Undetermined
Coefficients
Problem
number
:
Exercise
21.10,
page
231
Date
solved
:
Tuesday, September 30, 2025 at 04:21:20 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)-8*y(x) = 9*x*exp(x)+10*exp(-x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]-2*D[y[x],x]-8*y[x]==9*x*Exp[x]+10*Exp[-x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-9*x*exp(x) - 8*y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)) - 10*exp(-x),0) ics = {} dsolve(ode,func=y(x),ics=ics)