Internal
problem
ID
[7150]
Book
:
Ordinary
Differential
Equations,
By
Tenenbaum
and
Pollard.
Dover,
NY
1963
Section
:
Chapter
8.
Special
second
order
equations.
Lesson
35.
Independent
variable
x
absent
Problem
number
:
Exercise
35.21,
page
504
Date
solved
:
Tuesday, September 30, 2025 at 04:23:22 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=-diff(y(x),x)+x*diff(diff(y(x),x),x) = x^2; ic:=[y(1) = 0, D(y)(1) = -1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x*D[y[x],{x,2}]-D[y[x],x]==x^2; ic={y[1]==0,Derivative[1][y][1]==-1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 + x*Derivative(y(x), (x, 2)) - Derivative(y(x), x),0) ics = {y(1): 0, Subs(Derivative(y(x), x), x, 1): -1} dsolve(ode,func=y(x),ics=ics)