28.3.10 problem 11

Internal problem ID [7184]
Book : A treatise on ordinary and partial differential equations by William Woolsey Johnson. 1913
Section : Chapter VII, Solutions in series. Examples XIV. page 177
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 04:25:09 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x^{2} y^{\prime \prime }+x^{2} y^{\prime }+\left (x -2\right ) y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.030 (sec). Leaf size: 43
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+x^2*diff(y(x),x)+(x-2)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 \,x^{2} \left (1-\frac {3}{4} x +\frac {3}{10} x^{2}-\frac {1}{12} x^{3}+\frac {1}{56} x^{4}-\frac {1}{320} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+\frac {c_2 \left (12-2 x^{3}+\frac {3}{2} x^{4}-\frac {3}{5} x^{5}+\operatorname {O}\left (x^{6}\right )\right )}{x} \]
Mathematica. Time used: 0.019 (sec). Leaf size: 60
ode=x^2*D[y[x],{x,2}]+x^2*D[y[x],x]+(x-2)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{8}-\frac {x^2}{6}+\frac {1}{x}\right )+c_2 \left (\frac {x^6}{56}-\frac {x^5}{12}+\frac {3 x^4}{10}-\frac {3 x^3}{4}+x^2\right ) \]
Sympy. Time used: 0.291 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) + x**2*Derivative(y(x), (x, 2)) + (x - 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} x^{2} \left (- \frac {x^{3}}{12} + \frac {3 x^{2}}{10} - \frac {3 x}{4} + 1\right ) + \frac {C_{1}}{x} + O\left (x^{6}\right ) \]