Internal
problem
ID
[7186]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
VII,
Solutions
in
series.
Examples
XIV.
page
177
Problem
number
:
14
Date
solved
:
Tuesday, September 30, 2025 at 04:25:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*(1-4*x)*diff(diff(y(x),x),x)+((-n+1)*x-(6-4*n)*x^2)*diff(y(x),x)+n*(-n+1)*x*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*(1-4*x)*D[y[x],{x,2}]+((1-n)*x-(6-4*n)*x^2)*D[y[x],x]+n*(1-n)*x*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") n = symbols("n") y = Function("y") ode = Eq(n*x*(1 - n)*y(x) + x**2*(1 - 4*x)*Derivative(y(x), (x, 2)) + (-x**2*(6 - 4*n) + x*(1 - n))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)