Internal
problem
ID
[7188]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
VII,
Solutions
in
series.
Examples
XIV.
page
177
Problem
number
:
16
Date
solved
:
Tuesday, September 30, 2025 at 04:25:13 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
Order:=6; ode:=(a^2+x^2)*diff(diff(y(x),x),x)+x*diff(y(x),x)-n^2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(a^2+x^2)*D[y[x],{x,2}]+x*D[y[x],x]-n^2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") a = symbols("a") n = symbols("n") y = Function("y") ode = Eq(-n**2*y(x) + x*Derivative(y(x), x) + (a**2 + x**2)*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)