Internal
problem
ID
[7194]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
VII,
Solutions
in
series.
Examples
XV.
page
194
Problem
number
:
5
Date
solved
:
Tuesday, September 30, 2025 at 04:25:17 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=x^2*diff(diff(y(x),x),x)+x*(1+x)*diff(y(x),x)+(3*x-1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=x^2*D[y[x],{x,2}]+x*(x+1)*D[y[x],x]+(3*x-1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*(x + 1)*Derivative(y(x), x) + (3*x - 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)