Internal
problem
ID
[7202]
Book
:
A
treatise
on
ordinary
and
partial
differential
equations
by
William
Woolsey
Johnson.
1913
Section
:
Chapter
VII,
Solutions
in
series.
Examples
XV.
page
194
Problem
number
:
13
Date
solved
:
Tuesday, September 30, 2025 at 04:25:25 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=2*x^2*diff(diff(y(x),x),x)-(3*x+2)*diff(y(x),x)+(2*x-1)/x*y(x) = x^(1/2); dsolve(ode,y(x),type='series',x=0);
ode=2*x^2*D[y[x],{x,2}]-(3*x+2)*D[y[x],x]+(2*x-1)/x*y[x]==x^(1/2); ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x) + 2*x**2*Derivative(y(x), (x, 2)) - (3*x + 2)*Derivative(y(x), x) + (2*x - 1)*y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -sqrt(x) + 2*x**2*Derivative(y(x), (x, 2)) - (3*x + 2)*Derivative(y(x), x) + (2*x - 1)*y(x)/x does not match hint 2nd_power_series_regular