Internal
problem
ID
[7260]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
4.
OTHER
METHODS
FOR
FIRST-ORDER
EQUATIONS.
page
406
Problem
number
:
7
Date
solved
:
Tuesday, September 30, 2025 at 04:27:14 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x^2*diff(y(x),x)+y(x)^2-x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],x]+(y[x]^2-x*y[x])==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), x) - x*y(x) + y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)