29.5.16 problem 28

Internal problem ID [7285]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 5. SECOND-ORDER LINEAR EQUATIONSWITH CONSTANT COEFFICIENTS AND ZERO RIGHT-HAND SIDE. page 414
Problem number : 28
Date solved : Tuesday, September 30, 2025 at 04:27:47 PM
CAS classification : [[_high_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime \prime }+4 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 34
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (c_1 \sin \left (x \right ) {\mathrm e}^{2 x}+c_2 \cos \left (x \right ) {\mathrm e}^{2 x}+c_3 \sin \left (x \right )+c_4 \cos \left (x \right )\right ) {\mathrm e}^{-x} \]
Mathematica. Time used: 0.003 (sec). Leaf size: 40
ode=D[y[x],{x,4}]+4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (\left (c_4 e^{2 x}+c_1\right ) \cos (x)+\left (c_3 e^{2 x}+c_2\right ) \sin (x)\right ) \end{align*}
Sympy. Time used: 0.062 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*y(x) + Derivative(y(x), (x, 4)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (x \right )} + C_{2} \cos {\left (x \right )}\right ) e^{- x} + \left (C_{3} \sin {\left (x \right )} + C_{4} \cos {\left (x \right )}\right ) e^{x} \]