Internal
problem
ID
[7306]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
6.
SECOND-ORDER
LINEAR
EQUATIONSWITH
CONSTANT
COEFFICIENTS
AND
RIGHT-HAND
SIDE
NOT
ZERO.
page
422
Problem
number
:
21
Date
solved
:
Tuesday, September 30, 2025 at 04:28:01 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=5*diff(diff(y(x),x),x)+6*diff(y(x),x)+2*y(x) = x^2+6*x; dsolve(ode,y(x), singsol=all);
ode=5*D[y[x],{x,2}]+6*D[y[x],x]+2*y[x]==x^2+6*x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2 - 6*x + 2*y(x) + 6*Derivative(y(x), x) + 5*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)