Internal
problem
ID
[7328]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
7.
Other
second-Order
equations.
page
435
Problem
number
:
16
(b)
Date
solved
:
Tuesday, September 30, 2025 at 04:29:02 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)