29.7.11 problem 16 (b)

Internal problem ID [7328]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 7. Other second-Order equations. page 435
Problem number : 16 (b)
Date solved : Tuesday, September 30, 2025 at 04:29:02 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }-4 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {c_2 \,x^{4}+c_1}{x^{2}} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 18
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {c_2 x^4+c_1}{x^2} \end{align*}
Sympy. Time used: 0.087 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) - 4*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1}}{x^{2}} + C_{2} x^{2} \]