Internal
problem
ID
[7334]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
8,
Ordinary
differential
equations.
Section
7.
Other
second-Order
equations.
page
435
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 04:29:09 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+4*y(x) = 6*ln(x)*x^2; dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+4*y[x]==6*x^2*Log[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-6*x**2*log(x) + x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 4*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)