29.8.11 problem 11

Internal problem ID [7353]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 8, Ordinary differential equations. Section 13. Miscellaneous problems. page 466
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 04:29:31 PM
CAS classification : [_linear]

\begin{align*} y+2 x -x y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=y(x)+2*x-x*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \left (2 \ln \left (x \right )+c_1 \right ) x \]
Mathematica. Time used: 0.015 (sec). Leaf size: 14
ode=(y[x]+2*x)-x*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x (2 \log (x)+c_1) \end{align*}
Sympy. Time used: 0.095 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*Derivative(y(x), x) + 2*x + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + 2 \log {\left (x \right )}\right ) \]