29.9.5 problem 3, using series method

Internal problem ID [7375]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564
Problem number : 3, using series method
Date solved : Tuesday, September 30, 2025 at 04:30:02 PM
CAS classification : [_separable]

\begin{align*} x y^{\prime }&=y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 12
Order:=6; 
ode:=x*diff(y(x),x) = y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = c_1 x +O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 7
ode=x*D[y[x],x]==y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
ValueError : ODE x*Derivative(y(x), x) - y(x) does not match hint 1st_power_series