29.9.9 problem 5, using series method

Internal problem ID [7379]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564
Problem number : 5, using series method
Date solved : Tuesday, September 30, 2025 at 04:30:05 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }&=y \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 39
Order:=6; 
ode:=diff(diff(y(x),x),x) = y(x); 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {1}{2} x^{2}+\frac {1}{24} x^{4}\right ) y \left (0\right )+\left (x +\frac {1}{6} x^{3}+\frac {1}{120} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 42
ode=D[y[x],{x,2}]==y[x]; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (\frac {x^5}{120}+\frac {x^3}{6}+x\right )+c_1 \left (\frac {x^4}{24}+\frac {x^2}{2}+1\right ) \]
Sympy. Time used: 0.168 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{24} + \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{2}}{6} + 1\right ) + O\left (x^{6}\right ) \]