29.9.11 problem 6, using series method

Internal problem ID [7381]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564
Problem number : 6, using series method
Date solved : Tuesday, September 30, 2025 at 04:30:07 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 57
Order:=6; 
ode:=diff(diff(y(x),x),x)-2*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {1}{2} x^{2}-\frac {1}{3} x^{3}-\frac {1}{8} x^{4}-\frac {1}{30} x^{5}\right ) y \left (0\right )+\left (x +x^{2}+\frac {1}{2} x^{3}+\frac {1}{6} x^{4}+\frac {1}{24} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 66
ode=D[y[x],{x,2}]-2*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (-\frac {x^5}{30}-\frac {x^4}{8}-\frac {x^3}{3}-\frac {x^2}{2}+1\right )+c_2 \left (\frac {x^5}{24}+\frac {x^4}{6}+\frac {x^3}{2}+x^2+x\right ) \]
Sympy. Time used: 0.213 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - 2*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (- \frac {x^{4}}{8} - \frac {x^{3}}{3} - \frac {x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{3}}{6} + \frac {x^{2}}{2} + x + 1\right ) + O\left (x^{6}\right ) \]