Internal
problem
ID
[7385]
Book
:
Mathematical
Methods
in
the
Physical
Sciences.
third
edition.
Mary
L.
Boas.
John
Wiley.
2006
Section
:
Chapter
12,
Series
Solutions
of
Differential
Equations.
Section
1.
Miscellaneous
problems.
page
564
Problem
number
:
8,
using
series
method
Date
solved
:
Tuesday, September 30, 2025 at 04:30:10 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2+2*x)*diff(diff(y(x),x),x)-2*(1+x)*diff(y(x),x)+2*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2+2*x)*D[y[x],{x,2}]-2*(x+1)*D[y[x],x]+2*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-2*x - 2)*Derivative(y(x), x) + (x**2 + 2*x)*Derivative(y(x), (x, 2)) + 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)