29.9.17 problem 9, using series method

Internal problem ID [7387]
Book : Mathematical Methods in the Physical Sciences. third edition. Mary L. Boas. John Wiley. 2006
Section : Chapter 12, Series Solutions of Differential Equations. Section 1. Miscellaneous problems. page 564
Problem number : 9, using series method
Date solved : Tuesday, September 30, 2025 at 04:30:11 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x^{2}+1\right ) y^{\prime \prime }-2 x y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 18
Order:=6; 
ode:=(x^2+1)*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = y \left (0\right )+x y^{\prime }\left (0\right )-y \left (0\right ) x^{2} \]
Mathematica. Time used: 0.001 (sec). Leaf size: 18
ode=(x^2+1)*D[y[x],{x,2}]-2*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (1-x^2\right )+c_2 x \]
Sympy. Time used: 0.223 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + (x**2 + 1)*Derivative(y(x), (x, 2)) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (1 - x^{2}\right ) + C_{1} x + O\left (x^{6}\right ) \]