30.2.26 problem 36 part(b)

Internal problem ID [7454]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.3, Linear equations. Exercises. page 54
Problem number : 36 part(b)
Date solved : Tuesday, September 30, 2025 at 04:36:17 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+\frac {3 y}{x}&=x^{2} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 16
ode:=diff(y(x),x)+3*y(x)/x = x^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{6}+6 c_1}{6 x^{3}} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 19
ode=D[y[x],x]+3/x*y[x]==x^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {x^3}{6}+\frac {c_1}{x^3} \end{align*}
Sympy. Time used: 0.107 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2 + Derivative(y(x), x) + 3*y(x)/x,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + \frac {x^{6}}{6}}{x^{3}} \]