30.3.9 problem 9

Internal problem ID [7465]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.4, Exact equations. Exercises. page 64
Problem number : 9
Date solved : Tuesday, September 30, 2025 at 04:36:32 PM
CAS classification : [_linear]

\begin{align*} 2 x y+3+\left (x^{2}-1\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 17
ode:=2*x*y(x)+3+(x^2-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {-3 x +c_1}{x^{2}-1} \]
Mathematica. Time used: 0.021 (sec). Leaf size: 19
ode=(2*x*y[x]+3)+(x^2-1)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {-3 x+c_1}{x^2-1} \end{align*}
Sympy. Time used: 0.142 (sec). Leaf size: 12
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x) + (x**2 - 1)*Derivative(y(x), x) + 3,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} - 3 x}{x^{2} - 1} \]