Internal
problem
ID
[7483]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.4,
Exact
equations.
Exercises.
page
64
Problem
number
:
30
Date
solved
:
Sunday, October 12, 2025 at 01:34:31 AM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
ode:=5*x^2*y(x)+6*x^3*y(x)^2+4*x*y(x)^2+(2*x^3+3*x^4*y(x)+3*x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 5*x^2*y[x] + 6*x^3*y[x]^2 + 4*x*y[x]^2)+( 2*x^3+3*x^4*y[x] + 3*x^2*y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x**3*y(x)**2 + 5*x**2*y(x) + 4*x*y(x)**2 + (3*x**4*y(x) + 2*x**3 + 3*x**2*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out