30.4.11 problem 11

Internal problem ID [7494]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.5, Special Integrating Factors. Exercises. page 69
Problem number : 11
Date solved : Tuesday, September 30, 2025 at 04:39:38 PM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} y^{2}+2 x y-x^{2} y^{\prime }&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=y(x)^2+2*x*y(x)-x^2*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}}{-x +c_1} \]
Mathematica. Time used: 0.089 (sec). Leaf size: 23
ode=( y[x]^2+2*x*y[x] )-( x^2 )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {x^2}{x-c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.116 (sec). Leaf size: 8
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) + 2*x*y(x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x^{2}}{C_{1} - x} \]