Internal
problem
ID
[7497]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.5,
Special
Integrating
Factors.
Exercises.
page
69
Problem
number
:
15
Date
solved
:
Tuesday, September 30, 2025 at 04:39:46 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=3*y(x)+2*x*y(x)^2+(x+2*x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*y[x]+2*x*y[x]^2 )+( x+2*x^2*y[x] )*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**2 + (2*x**2*y(x) + x)*Derivative(y(x), x) + 3*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)