Internal
problem
ID
[7509]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
10
Date
solved
:
Tuesday, September 30, 2025 at 04:40:43 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=3*x^2-y(x)^2-(x*y(x)-x^3/y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(3*x^2-y[x]^2)-(x*y[x]-x^3/y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2 - (-x**3/y(x) + x*y(x))*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)