30.5.22 problem 22

Internal problem ID [7521]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Section 2.6, Substitutions and Transformations. Exercises. page 76
Problem number : 22
Date solved : Tuesday, September 30, 2025 at 04:41:50 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _Bernoulli]

\begin{align*} y^{\prime }-y&={\mathrm e}^{2 x} y^{3} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 69
ode:=diff(y(x),x)-y(x) = exp(2*x)*y(x)^3; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\sqrt {2}\, \sqrt {2 \,{\mathrm e}^{-6 x} c_1 -{\mathrm e}^{-2 x}}}{2 c_1 \,{\mathrm e}^{-4 x}-1} \\ y &= \frac {\sqrt {2}\, \sqrt {2 \,{\mathrm e}^{-6 x} c_1 -{\mathrm e}^{-2 x}}}{-2 c_1 \,{\mathrm e}^{-4 x}+1} \\ \end{align*}
Mathematica. Time used: 0.507 (sec). Leaf size: 66
ode=D[y[x],x]-y[x]==Exp[2*x]*y[x]^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {i \sqrt {2} e^x}{\sqrt {e^{4 x}-2 c_1}}\\ y(x)&\to \frac {i \sqrt {2} e^x}{\sqrt {e^{4 x}-2 c_1}}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.410 (sec). Leaf size: 46
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**3*exp(2*x) - y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {2} \sqrt {\frac {e^{2 x}}{C_{1} - e^{4 x}}}, \ y{\left (x \right )} = \sqrt {2} \sqrt {\frac {e^{2 x}}{C_{1} - e^{4 x}}}\right ] \]