Internal
problem
ID
[7535]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Section
2.6,
Substitutions
and
Transformations.
Exercises.
page
76
Problem
number
:
47
(b)
Date
solved
:
Tuesday, September 30, 2025 at 04:44:55 PM
CAS
classification
:
[[_homogeneous, `class D`], _rational, _Riccati]
ode:=diff(y(x),x) = x^3*(y(x)-x)^2+y(x)/x; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==x^3*(y[x]-x)^2 + y[x]/x; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**3*(-x + y(x))**2 + Derivative(y(x), x) - y(x)/x,0) ics = {} dsolve(ode,func=y(x),ics=ics)