30.6.22 problem 23

Internal problem ID [7557]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 2, First order differential equations. Review problems. page 79
Problem number : 23
Date solved : Tuesday, September 30, 2025 at 04:49:09 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y-x +\left (x +y\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.013 (sec). Leaf size: 51
ode:=y(x)-x+(x+y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {-c_1 x -\sqrt {2 x^{2} c_1^{2}+1}}{c_1} \\ y &= \frac {-c_1 x +\sqrt {2 x^{2} c_1^{2}+1}}{c_1} \\ \end{align*}
Mathematica. Time used: 0.255 (sec). Leaf size: 94
ode=(y[x]-x)+(x+y[x])*D[y[x],x] ==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -x-\sqrt {2 x^2+e^{2 c_1}}\\ y(x)&\to -x+\sqrt {2 x^2+e^{2 c_1}}\\ y(x)&\to -\sqrt {2} \sqrt {x^2}-x\\ y(x)&\to \sqrt {2} \sqrt {x^2}-x \end{align*}
Sympy. Time used: 0.683 (sec). Leaf size: 29
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x + (x + y(x))*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - x - \sqrt {C_{1} + 2 x^{2}}, \ y{\left (x \right )} = - x + \sqrt {C_{1} + 2 x^{2}}\right ] \]