Internal
problem
ID
[7571]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Review
problems.
page
79
Problem
number
:
37
Date
solved
:
Tuesday, September 30, 2025 at 04:54:02 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=2*x-y(x)+(x+y(x)-3)*diff(y(x),x) = 0; ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=(2*x-y[x] )+( x+y[x]-3 )*D[y[x],x]==0; ic={y[0]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (x + y(x) - 3)*Derivative(y(x), x) - y(x),0) ics = {y(0): 2} dsolve(ode,func=y(x),ics=ics)