Internal
problem
ID
[7574]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Review
problems.
page
79
Problem
number
:
40
Date
solved
:
Tuesday, September 30, 2025 at 04:54:22 PM
CAS
classification
:
[_Bernoulli]
With initial conditions
ode:=diff(y(x),x)-4*y(x) = 2*x*y(x)^2; ic:=[y(0) = -4]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],x]-4*y[x]==2*x*y[x]^2; ic={y[0]==-4}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)**2 - 4*y(x) + Derivative(y(x), x),0) ics = {y(0): -4} dsolve(ode,func=y(x),ics=ics)