Internal
problem
ID
[7576]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Review
problem.
(F)
Clairaut
equation.
page
85
Problem
number
:
5
(d)
Date
solved
:
Tuesday, September 30, 2025 at 04:54:25 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=y(x) = x*diff(y(x),x)+2*diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=y[x]==x*D[y[x],x]+2*D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*Derivative(y(x), x) + y(x) + 2*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)