Internal
problem
ID
[7579]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
2,
First
order
differential
equations.
Review
problem.
(I)
Solar
Collector.
page
87
Problem
number
:
8
Date
solved
:
Tuesday, September 30, 2025 at 04:54:28 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=diff(y(x),x) = (-x+(x^2+y(x)^2)^(1/2))/y(x); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==( - x + Sqrt[x^2+y[x]^2] )/y[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-(-x + sqrt(x**2 + y(x)**2))/y(x) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)