30.12.3 problem 3

Internal problem ID [7595]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 4, Linear Second-Order Equations. EXERCISES 4.2 at page 164
Problem number : 3
Date solved : Tuesday, September 30, 2025 at 04:54:45 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+5 y^{\prime }+6 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 15
ode:=diff(diff(y(t),t),t)+5*diff(y(t),t)+6*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{t}+c_2 \right ) {\mathrm e}^{-3 t} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 20
ode=D[y[t],{t,2}]+5*D[y[t],t]+6*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-3 t} \left (c_2 e^t+c_1\right ) \end{align*}
Sympy. Time used: 0.106 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(6*y(t) + 5*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} e^{- t}\right ) e^{- 2 t} \]