30.12.7 problem 7

Internal problem ID [7599]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 4, Linear Second-Order Equations. EXERCISES 4.2 at page 164
Problem number : 7
Date solved : Tuesday, September 30, 2025 at 04:54:47 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 6 y^{\prime \prime }+y^{\prime }-2 y&=0 \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=6*diff(diff(y(t),t),t)+diff(y(t),t)-2*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{\frac {7 t}{6}}+c_2 \right ) {\mathrm e}^{-\frac {2 t}{3}} \]
Mathematica. Time used: 0.007 (sec). Leaf size: 26
ode=6*D[y[t],{t,2}]+D[y[t],t]-2*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{-2 t/3} \left (c_2 e^{7 t/6}+c_1\right ) \end{align*}
Sympy. Time used: 0.084 (sec). Leaf size: 17
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*y(t) + Derivative(y(t), t) + 6*Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- \frac {2 t}{3}} + C_{2} e^{\frac {t}{2}} \]