30.12.26 problem 26 (b)

Internal problem ID [7618]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 4, Linear Second-Order Equations. EXERCISES 4.2 at page 164
Problem number : 26 (b)
Date solved : Tuesday, September 30, 2025 at 04:55:00 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=2 \\ y \left (\pi \right )&=0 \\ \end{align*}
Maple
ode:=diff(diff(y(t),t),t)+y(t) = 0; 
ic:=[y(0) = 2, y(Pi) = 0]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=D[y[t],{t,2}]+y[t]==0; 
ic={y[0]==2,y[Pi] ==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 

{}

Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(y(t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 2, y(pi): 0} 
dsolve(ode,func=y(t),ics=ics)
 
ValueError : Couldnt solve for initial conditions