30.13.1 problem 1

Internal problem ID [7633]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 8, Series solutions of differential equations. Section 8.3. page 443
Problem number : 1
Date solved : Tuesday, September 30, 2025 at 04:55:10 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x +1\right ) y^{\prime \prime }-x^{2} y^{\prime }+3 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 54
Order:=6; 
ode:=(1+x)*diff(diff(y(x),x),x)-x^2*diff(y(x),x)+3*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1-\frac {3}{2} x^{2}+\frac {1}{2} x^{3}+\frac {1}{8} x^{4}-\frac {3}{10} x^{5}\right ) y \left (0\right )+\left (x -\frac {1}{2} x^{3}+\frac {1}{3} x^{4}-\frac {1}{8} x^{5}\right ) y^{\prime }\left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.012 (sec). Leaf size: 63
ode=(x+1)*D[y[x],{x,2}]-x^2*D[y[x],x]+3*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_2 \left (-\frac {x^5}{8}+\frac {x^4}{3}-\frac {x^3}{2}+x\right )+c_1 \left (-\frac {3 x^5}{10}+\frac {x^4}{8}+\frac {x^3}{2}-\frac {3 x^2}{2}+1\right ) \]
Sympy. Time used: 0.304 (sec). Leaf size: 41
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**2*Derivative(y(x), x) + (x + 1)*Derivative(y(x), (x, 2)) + 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (\frac {x^{4}}{8} + \frac {x^{3}}{2} - \frac {3 x^{2}}{2} + 1\right ) + C_{1} x \left (\frac {x^{3}}{3} - \frac {x^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]