Internal
problem
ID
[7635]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
8,
Series
solutions
of
differential
equations.
Section
8.3.
page
443
Problem
number
:
3
Date
solved
:
Tuesday, September 30, 2025 at 04:55:11 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2-2)*diff(diff(y(x),x),x)+2*diff(y(x),x)+y(x)*sin(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2-2)*D[y[x],{x,2}]+2*D[y[x],x]+Sin[x]*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2 - 2)*Derivative(y(x), (x, 2)) + y(x)*sin(x) + 2*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)