Internal
problem
ID
[7638]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
8,
Series
solutions
of
differential
equations.
Section
8.3.
page
443
Problem
number
:
6
Date
solved
:
Tuesday, September 30, 2025 at 04:55:15 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
Order:=6; ode:=(x^2-1)*diff(diff(y(x),x),x)+(1-x)*diff(y(x),x)+(x^2-2*x+1)*y(x) = 0; dsolve(ode,y(x),type='series',x=0);
ode=(x^2-1)*D[y[x],{x,2}]+(1-x)*D[y[x],x]+(x^2-2*x+1)*y[x]==0; ic={}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((1 - x)*Derivative(y(x), x) + (x**2 - 1)*Derivative(y(x), (x, 2)) + (x**2 - 2*x + 1)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)