30.14.5 problem 5

Internal problem ID [7654]
Book : Fundamentals of Differential Equations. By Nagle, Saff and Snider. 9th edition. Boston. Pearson 2018.
Section : Chapter 8, Series solutions of differential equations. Section 8.4. page 449
Problem number : 5
Date solved : Tuesday, September 30, 2025 at 04:55:31 PM
CAS classification : [_Lienard]

\begin{align*} y^{\prime \prime }-\tan \left (x \right ) y^{\prime }+y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 1 \end{align*}
Maple. Time used: 0.014 (sec). Leaf size: 125
Order:=6; 
ode:=diff(diff(y(x),x),x)-tan(x)*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x),type='series',x=1);
 
\[ y = \left (1-\frac {\left (x -1\right )^{2}}{2}-\frac {\tan \left (1\right ) \left (x -1\right )^{3}}{6}+\left (\frac {1}{12}-\frac {\sec \left (1\right )^{2}}{8}\right ) \left (x -1\right )^{4}+\frac {\tan \left (1\right ) \left (1-4 \sec \left (1\right )^{2}\right ) \left (x -1\right )^{5}}{40}\right ) y \left (1\right )+\left (x -1+\frac {\tan \left (1\right ) \left (x -1\right )^{2}}{2}+\frac {\tan \left (1\right )^{2} \left (x -1\right )^{3}}{3}+\frac {\tan \left (1\right ) \left (-1+2 \sec \left (1\right )^{2}\right ) \left (x -1\right )^{4}}{8}+\frac {\left (5-27 \sec \left (1\right )^{2}+24 \sec \left (1\right )^{4}\right ) \left (x -1\right )^{5}}{120}\right ) y^{\prime }\left (1\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.006 (sec). Leaf size: 289
ode=D[y[x],{x,2}]-Tan[x]*D[y[x],x]+y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,1,5}]
 
\[ y(x)\to c_1 \left (\frac {1}{24} (x-1)^4-\frac {1}{2} (x-1)^2-\frac {1}{120} (x-1)^5 \tan ^3(1)-\frac {1}{24} (x-1)^4 \tan ^2(1)+\frac {1}{60} (x-1)^5 \tan (1)-\frac {1}{6} (x-1)^3 \tan (1)-\frac {1}{12} (x-1)^4 \sec ^2(1)-\frac {11}{120} (x-1)^5 \tan (1) \sec ^2(1)+1\right )+c_2 \left (\frac {1}{120} (x-1)^5-\frac {1}{6} (x-1)^3+x+\frac {1}{120} (x-1)^5 \tan ^4(1)+\frac {1}{24} (x-1)^4 \tan ^3(1)-\frac {1}{40} (x-1)^5 \tan ^2(1)+\frac {1}{6} (x-1)^3 \tan ^2(1)-\frac {1}{12} (x-1)^4 \tan (1)+\frac {1}{2} (x-1)^2 \tan (1)+\frac {1}{40} (x-1)^5 \sec ^4(1)-\frac {1}{30} (x-1)^5 \sec ^2(1)+\frac {1}{6} (x-1)^3 \sec ^2(1)-\frac {1}{60} (x-1)^5 (\cos (2)-2) \sec ^4(1)+\frac {7}{60} (x-1)^5 \tan ^2(1) \sec ^2(1)+\frac {5}{24} (x-1)^4 \tan (1) \sec ^2(1)-1\right ) \]
Sympy. Time used: 1.273 (sec). Leaf size: 110
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(y(x) - tan(x)*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=1,n=6)
 
\[ y{\left (x \right )} = C_{2} \left (x + \frac {\left (x - 1\right )^{4} \tan ^{3}{\left (x + 1 \right )}}{24} - \frac {\left (x - 1\right )^{4} \tan {\left (x + 1 \right )}}{12} + \frac {\left (x - 1\right )^{3} \tan ^{2}{\left (x + 1 \right )}}{6} - \frac {\left (x - 1\right )^{3}}{6} + \frac {\left (x - 1\right )^{2} \tan {\left (x + 1 \right )}}{2} - 1\right ) + C_{1} \left (- \frac {\left (x - 1\right )^{4} \tan ^{2}{\left (x + 1 \right )}}{24} + \frac {\left (x - 1\right )^{4}}{24} - \frac {\left (x - 1\right )^{3} \tan {\left (x + 1 \right )}}{6} - \frac {\left (x - 1\right )^{2}}{2} + 1\right ) + O\left (x^{6}\right ) \]