Internal
problem
ID
[7669]
Book
:
Fundamentals
of
Differential
Equations.
By
Nagle,
Saff
and
Snider.
9th
edition.
Boston.
Pearson
2018.
Section
:
Chapter
8,
Series
solutions
of
differential
equations.
Section
8.4.
page
449
Problem
number
:
23
Date
solved
:
Tuesday, September 30, 2025 at 04:55:43 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
Using series method with expansion around
Order:=6; ode:=diff(diff(z(x),x),x)+x*diff(z(x),x)+z(x) = x^2+2*x+1; dsolve(ode,z(x),type='series',x=0);
ode=D[z[x],{x,2}]+x*D[z[x],x]+z[x]==x^2+2*x+1; ic={}; AsymptoticDSolveValue[{ode,ic},z[x],{x,0,5}]
from sympy import * x = symbols("x") z = Function("z") ode = Eq(-x**2 + x*Derivative(z(x), x) - 2*x + z(x) + Derivative(z(x), (x, 2)) - 1,0) ics = {} dsolve(ode,func=z(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
ValueError : ODE -x**2 + x*Derivative(z(x), x) - 2*x + z(x) + Derivative(z(x), (x, 2)) - 1 does not match hint 2nd_power_series_regular