Internal
problem
ID
[7681]
Book
:
Basic
Training
in
Mathematics.
By
R.
Shankar.
Plenum
Press.
NY.
1995
Section
:
Chapter
10,
Differential
equations.
Section
10.2,
ODEs
with
constant
Coefficients.
page
307
Problem
number
:
10.2.10
Date
solved
:
Tuesday, September 30, 2025 at 04:55:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(x(t),t),t)+2*gamma*diff(x(t),t)+omega__0*x(t) = F*cos(omega*t); dsolve(ode,x(t), singsol=all);
ode=D[x[t],{t,2}]+2*\[Gamma]*D[x[t],t]+Subscript[\[Omega],0]*x[t]==F*Cos[\[Omega]*t]; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") F = symbols("F") Gamma = symbols("Gamma") omega = symbols("omega") omega__0 = symbols("omega__0") x = Function("x") ode = Eq(-F*cos(omega*t) + 2*Gamma*Derivative(x(t), t) + omega__0*x(t) + Derivative(x(t), (t, 2)),0) ics = {} dsolve(ode,func=x(t),ics=ics)