Internal
problem
ID
[7784]
Book
:
Engineering
Mathematics.
By
K.
A.
Stroud.
5th
edition.
Industrial
press
Inc.
NY.
2001
Section
:
Program
25.
Second
order
differential
equations.
Further
problems
25.
page
1094
Problem
number
:
12
Date
solved
:
Tuesday, September 30, 2025 at 05:05:25 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=diff(diff(x(t),t),t)+4*diff(x(t),t)+3*x(t) = exp(-3*t); ic:=[x(0) = 1/2, D(x)(0) = -2]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],{t,2}]+4*D[x[t],t]+3*x[t]==Exp[-3*t]; ic={x[0]==1/2,Derivative[1][x][0 ]==-2}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(3*x(t) + 4*Derivative(x(t), t) + Derivative(x(t), (t, 2)) - exp(-3*t),0) ics = {x(0): 1/2, Subs(Derivative(x(t), t), t, 0): -2} dsolve(ode,func=x(t),ics=ics)